

Département d'informatique

Estimating emotions and tracking interest during movie watching, based on multimedia content and physiological responses

> Joep Kierkels, Mohammad Soleymani, Guillaume Chanel, Eric Bruno, Stéphane Marchand-Maillet, Thierry Pun

> > CVML - CUI - University of Geneva

IM2 & Affective Sciences Summer Institute

8 September 2008

Introduction & Outline

Why estimate emotions?

- Emotions reveal a persons true feelings in real-time
- In a video context, build a personal profile for video retrieval
- Physiological signals are (also real-time) related to these emotions
- Find correlated features
- Assessment of user behaviour and emotions
 - User's emotion prediction by arousal/valence levels from audio-video content analysis
 - User's emotional characterization by arousal/valence levels from physiological signals
- Assess interest levels

IM2 & Affective Sciences Summer Institute

8 September 2008

Video dataset

UNIVERSIT

DE GENÈV

- Horror: The Ring, 28 days later
- Action: Kill Bill VOL I, Saving private Ryan
- Drama: Hotel Rwanda, The Pianist
- Comedy: Mr. Bean's Holiday, Love actually
- 8 short video clips were extracted from each movie
- A Neutral clip between each two video clips to record baseline and let the participant to return to neutral state
- Total duration ~2 hours

Multimedia content features

- All video content features are extracted with the help of OVAL and OMT software packages (*Viper*)
- Features extracted from multimedia content, namely:
 - Average shot duration
 - Shot change rate and variation
 - Color variance
 - Key lighting
 - Zero crossing rate (ZCR)
 - Audio energy
 - Audio type vector (music, speech, environment sound, and silence ratio over time)

Physiological feature extraction

EMG	Power of Contraction	K		
ECG	Heart Rate			
	Heart Rate Variability			
	Inter-Beat- Interval			
Blinks	Blink Amplitude	Fror	ntalis	
	Blink Duration			
	Blink Frequency	Zygomaticus	E P I C	
Plethysmograph	Heart Rate		Galea apone	A N I U
, , , , , , , , , , , , , , , , , , ,	Heart Rate Variability		Provide States	Cice s
	Inter-Beat- Interval		Seel Concerne	
Respiration	Respiration Depth			
	Respiration Rate		ZA PARANYA	and the second
GSR	GSR			
	Number of peaks		THE STREET	NT
	Peak amplitude			1///
	dGSR/dt			YIA/A
Temperature	Temperature			
	dTemp/dt			
IM2 & Affective Sci	8 September 2008	5		

Self Assessment

• Introducing the arousal valence space

Feature correlation

Correlation of selected multimedia features with physiological features of 8 participants						
	EMG Zygomatic. Energy/Key lighting	Skin temp.standard deviation /5 th autocorrelation of MFCC coefficient	Skin temperature range/Shot length variation	EMG Zygomatic. energy/ 15 th /20 bin of hue histogram		
1	0.24	-	-	-0.41		
2	0.62	0.44	0.42	-0.41		
3	0.46	0.40	0.56	-0.34		
4	0.40	0.32	0.43	-0.30		
5	0.36	0.39	0.58	-		
6	0.44	0.31	0.51	-0.32		
7	0.47	0.34	0.27	-0.43		
8	0.54	0.34	0.42	-0.45		

Affect characterization

$$\begin{bmatrix} Y \\ \end{bmatrix} = \begin{bmatrix} weights \\ values \end{bmatrix} \cdot \begin{bmatrix} feature - \\ values \end{bmatrix}$$

- Y can be either arousal or valence value, weights are trained. (RVM-lin.)
- Use computed weights to estimate arousal/valence scores (Tipping toolbox)
- Leave one out cross validation

$$\hat{y}(j) = \sum_{i} w_{i}x_{i} + w_{0}$$

i = feature number
i = movie scene number

Results of affect characterization

Interest detection

Need for training data containing relevant features for two levels of interest

LDA Classifier output: 72% accuracy on training data

Interest detection during movies

Conclusions

- The correlation between stimuli (multimedia) and response (physiological signals) was shown.
- Results show the ability of the physiological signals for affective characterization.
- Temporal detection of interesting movie fragments is feasible.

12

- Using prior information for affect estimation (genre, users rating, etc)
- Modeling and estimating dynamics of affect in movie watching by multimedia features.
- Implement other features (e.g., head movements from camera).
- Obtain objective measure for detecting interesting episodes instead of visual inspection.

13