

FACULTÉ DES SCIENCES Département d'informatique

Estimating emotions and tracking interest during movie watching, based on multimedia content and physiological responses

<u>Joep Kierkels</u>, Mohammad Soleymani, Guillaume Chanel, Eric Bruno, Stéphane Marchand-Maillet, Thierry Pun

CVML - CUI - University of Geneva

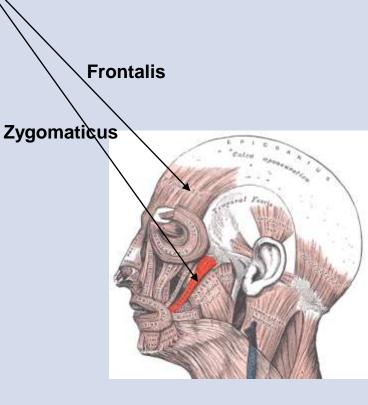
- Introduction
- Dataset
- Affective model
- Multimedia and physiological signals correlation
- Affective characterization
- Classification for interest detection
- Conclusion and future work

- Affect and interest detection from movie scenes is useful for indexing, highlighting and user profiling.
- Find correlates features
- Assessment of user behaviour and emotions
 - User's emotion prediction by arousal/valence levels from audio-video content analysis
 - User's emotional characterization by arousal/valence levels from physiological signals
- Assess interest levels

Video dataset

- In the experimental data set we have 8 movies from 4 different genres:
 - Horror: The Ring, 28 days later
 - Action: Kill Bill VOL I, Saving private Ryan
 - Drama: Hotel Rwanda, The Pianist
 - Comedy: Mr. Bean's Holiday, Love actually
- 8 short video clips were extracted from these movies.
- Neutral clip between each two video clips to record baseline and let the participant to return to neutral state.
- Total duration ~2 hours.

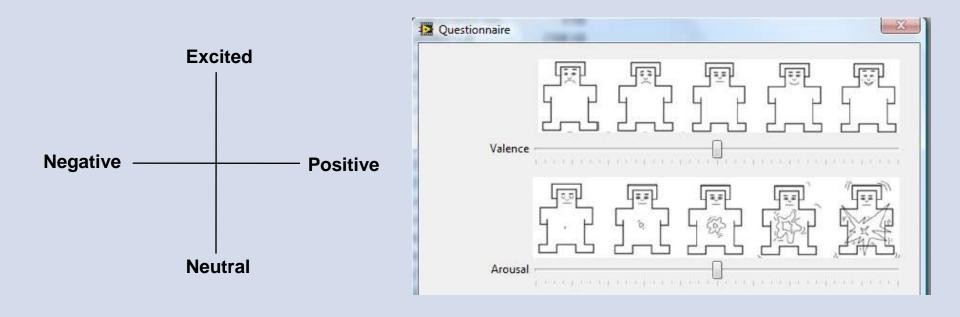
	Neutral clip	Movie scene	Self assessment		
	~30 seconds	1~2 minutes	time	→	
IM2 summer s	school		4 Sep	tember 2008	4



- All video content features are extracted with the help of OVAL and OMT software packages (*Viper*)
- Features extracted from multimedia content, namely:
 - Average shot duration
 - Shot change rate and variation
 - Color variance
 - Key lighting
 - Zero crossing rate (ZCR)
 - Audio energy
 - Audio type vector (music, speech, environment sound, and silence ratio over time)

Physiological feature extraction

EMG	Contraction Power	
ECG	Heart Rate] `
	Heart Rate Variability	
	Inter-Beat- Interval	
Blinks	Blink Amplitude	
	Blink Duration	
	Blink Frequency]
Plethysmo-	Heart Rate	
graph	Heart Rate Variability	
9	Inter-Beat- Interval	
Respiration	Respiration Depth	
	Respiration Rate	
GSR	GSR	
	Number of peaks	
	Peak amplitude	1
	dGSR/dt]
Temperature	Temperature	
	dTemp/dt	



IM2 summer school

Self Assessment

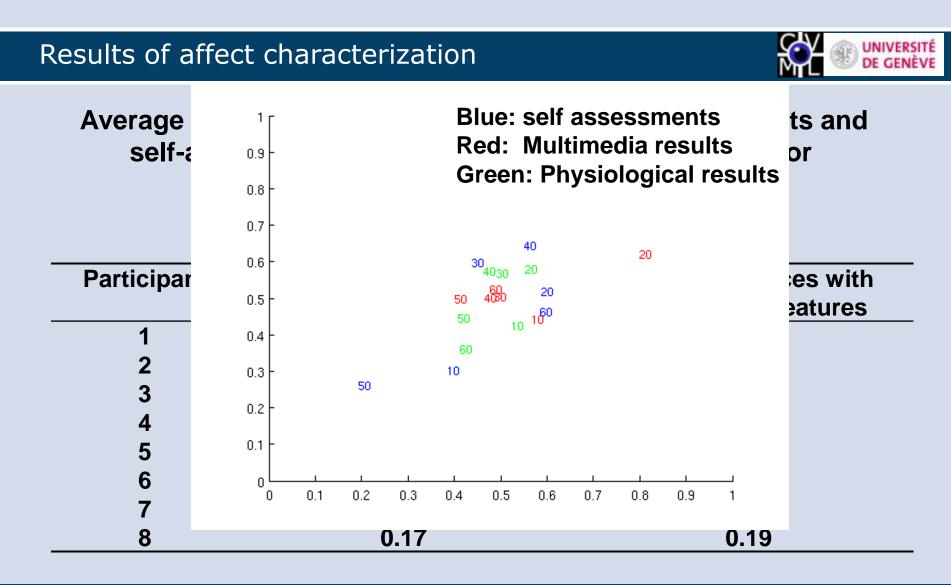
• Introducing the arousal valence space

	IM2 summer school	4 September 2008	7
--	-------------------	------------------	---

Feature correlation

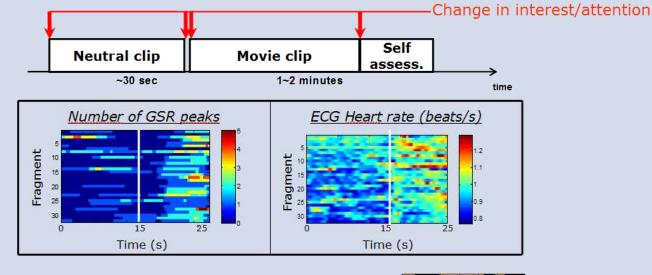
C	Correlation of selected multimedia features with physiological features of 8 participants			
	EMG Zygomatic. Energy/Key lighting	Skin temp.standard deviation /5 th autocorrelation of MFCC coefficient	Skin temperature range/Shot length variation	EMG Zygomatic. energy/ 15 th /20 bin of hue histogram
1	0.24	-	-	-0.41
2	0.62	0.44	0.42	-0.41
3	0.46	0.40	0.56	-0.34
4	0.40	0.32	0.43	-0.30
5	0.36	0.39	0.58	-
6	0.44	0.31	0.51	-0.32
7	0.47	0.34	0.27	-0.43
8	0.54	0.34	0.42	-0.45

IM2 summer school


4 September 2008 8

- Relevance vector machine is used to compute linear regression weights (*w_i*) to estimate arousal/valence scores. (Tipping toolbox)
- y_j is the estimation from arousal or valence value for j-th observation (video clip), x_i is the i-th feature

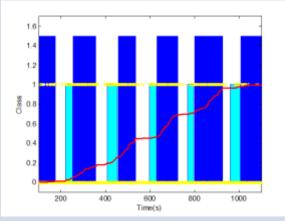
$$\hat{y}(j) = \sum_{i} w_i x_i + w_0$$

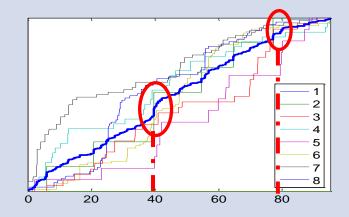

Leave one out cross validation

	IM2 summer school	4 September 2008	10
--	-------------------	------------------	----

Need for training data which contains relevant features for at least two levels of interest.

LDA Classifier output: 72% accuracy




Interest detection during movies

- Analyze full experiment.
- Compare participants.
- Evaluate.

Conclusion

- The correlation between stimuli (multimedia) and response (physiological signals) was shown.
- Results show the ability of the physiological signals for affective characterization
- Temporal detection of interesting movie fragments is feasible.

- Implementation of head-movement and facial expressions as features.
- Obtaining objective measure for detecting interesting episodes instead of visual inspection.
- Using prior information for affect estimation (genre, users rating, etc)
- Modeling and estimating dynamics of affect in movie watching by multimedia features.