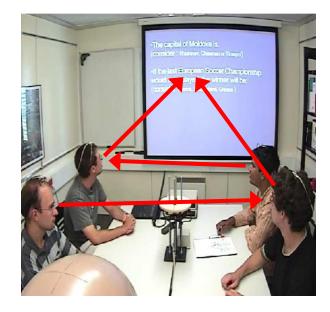


Contextual Recognition of Visual Focus of Attention in Meetings

Jean-Marc Odobez (joint work with Sileye Ba) Idiap Research Institute


Joint IM2-AS summer Institute, Riederalp, 1-3 september 2008

Visual focus of attention (VFOA)

• Focus of attention: defined by the eye gaze

"where and at whom or what a person is looking at"

- Non-verbal signal which conveys rich information about a person
 - what is he interested in
 - what is he doing (e.g. manipulation)
 - how does he explore a new environment ?
 - reaction to different stimuli
- Gaze is a strong social interaction cue
 - regulate conversation
 - personality traits
 - express intimacy, empathy
 - exercise social control => leadership, social status (cf D. Gatica's talk)

Communication role of gaze in conversations

- Important non-verbal interaction cue, with different functions in conversations [Kendon, Goodwin]
 - establish relationship (through mutual gaze)
 - monitoring and regulating the course of interactions
 - examples, in face-to-face conversations
 - listeners show their attention by orienting their gaze to the speaker
 - speakers use their gaze to indicate whom they address and secure their attention
 - when a speaker ends his utterance, he tends to look at the next speaker
 - ⇒ gaze is a turn holding/yielding/taking cue
 - gaze interaction patterns define some codes useful to organize conversations

This presentation

present a model of the gaze/speaking turn relationship

Adressee recognition

 Addressee recognition "who is a person talking to ?"

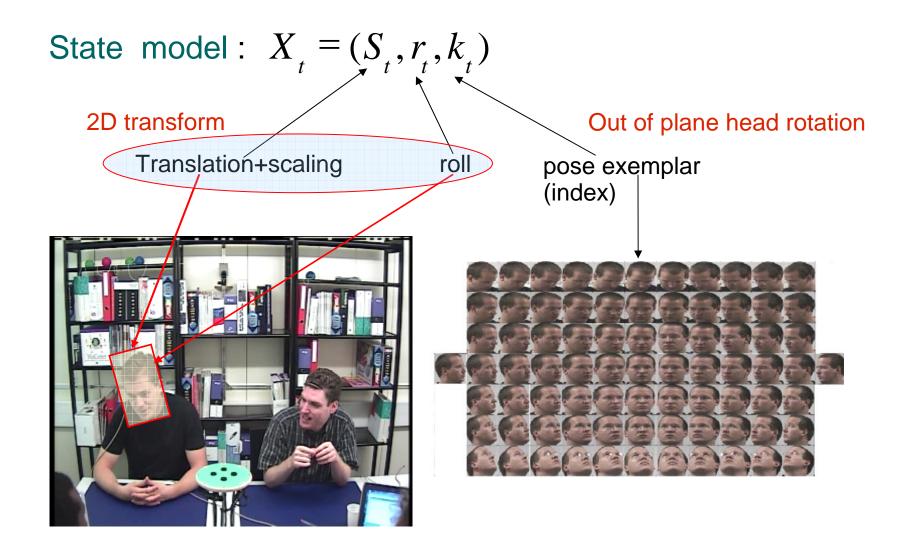
important task in several contexts

- Human-computer interaction
 - information kiosk, robots
 - presence of several people
 - artificial agent: important to know whether it/he is addressed or not

- psychosocial studies (dyadic, multiparty face-to-face conversation)
 => gaze is a good predictor of addressee-hood
- presence of artefact
 - object playing central role in a given task (e.g. manipulation) attracts attention
 - overrules trends of eye gaze behaviour observed in face-to-face conversations
 - => this has to be taken into account when modeling VFOA in meetings

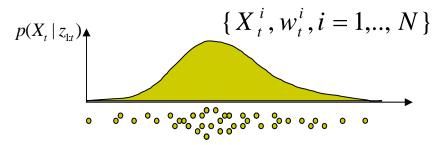
Estimating Gaze Direction

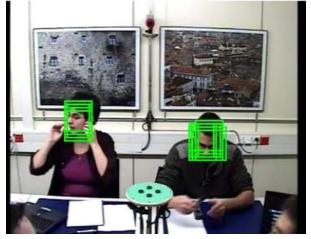
- VFOA defined by eye gaze
 => head orientation + eye-in-head orientation
- HCI oriented gazing estimation approaches
 - head mounted system, high resolution iris image => invasive, restrict mobility interfere with natural conversation
- alternative :
 - use head pose as surrogate
 - psychological evidence people do exploit head pose to infer the VFOA of other people
 - empirical evidence: working in simple settings
 - In meetings, exploit interaction with other cues



Main issues

- Head pose is the main cue
 - how and well can we estimate it ?
- VFOA modeling
 - how do we define the VFOA ?
 - how can we estimate the VFOA solely from head pose ?
 - multi-party VFOA recognition
 - audio-visual contextual cues
 - interaction models between gaze and speaking turn patterns (conversational event)
 - influence of group activity

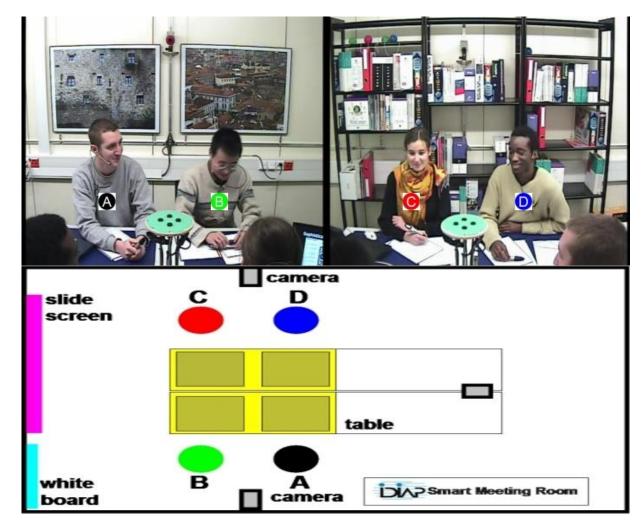

Joint Head Location and Pose Tracking [Ba 2005]


Joint Head Location and Pose Tracking [Ba 2005]

- Bayesian tracking with sampling approximation (particle filters)
- Joint optimization of location and pose not head tracking then pose estimation
- Appearance-based likelihood models
 - pose dependent/independent
 - various features

 Sampling exploits output of a head detector automatic (re)initialization and failure recovery

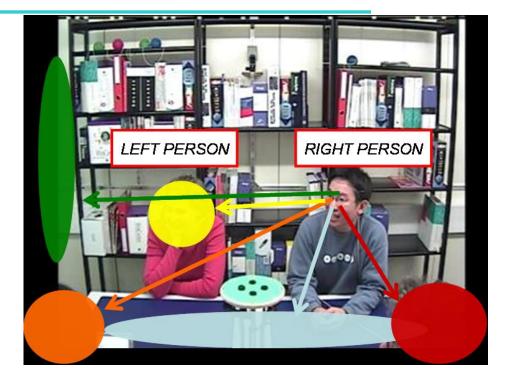
Illustration of head pose tracking

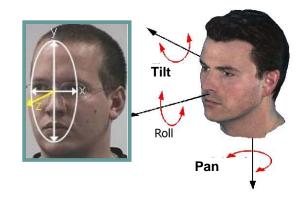


- around 10 degree error in pan
- tilt more difficult to estimate
- large variation across people (some people easier to track)

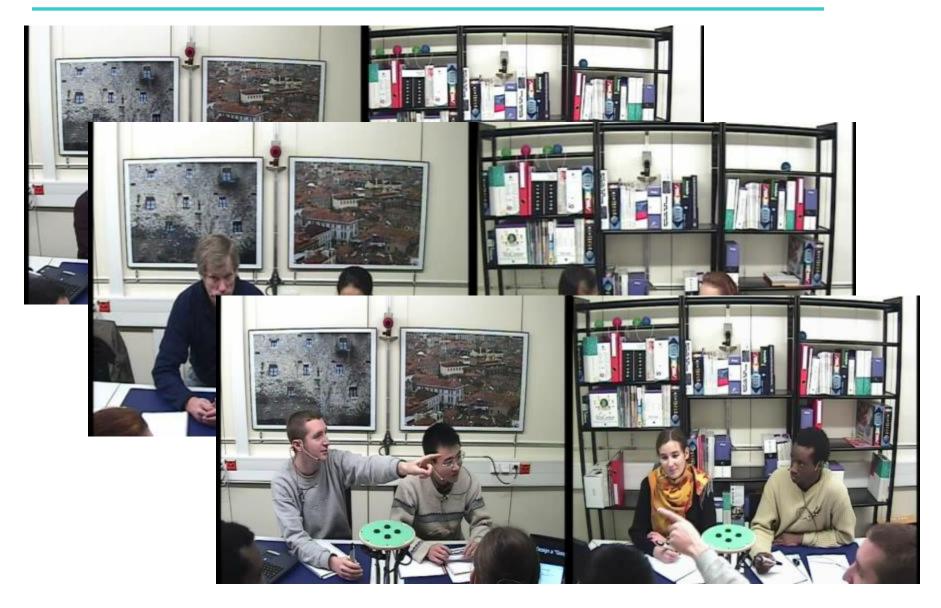
Multi party VFOA recognition using contextual cues

- how do we define the VFOA ?
 - set-up and task description
 - analysis of evaluation dataset

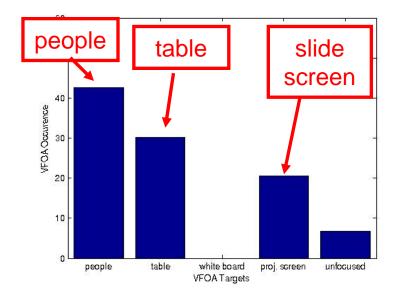

Meeting set-up


• meeting setup

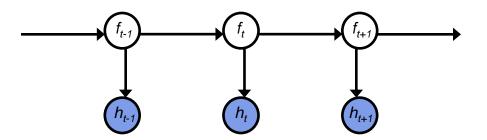
Task description


- Task: estimate a person focus of attention f_t
- FOA set : 6 labels
 - other participants
 - slide screen/white board
 - table
 - unfocused

- Input:
 - head pose features *h_t* (pan/tilt angles at time step t)
 - other contextual cues

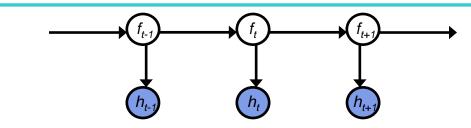


Data samples



VFOA statistics analysis

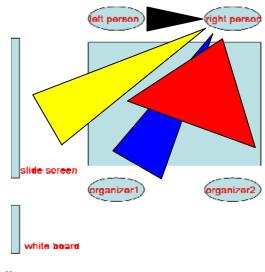
- 4 full meetings, people seated, total: 90 min data
 - people presenting, discussing
- real people behavior
 - laptop and object manipulation
 - large variation of body poses, gaze behavior, gestures
- VFOA analysis
 - only 43% looking at people
 - around 30% looking at table
 - \Rightarrow people use their laptop
 - \Rightarrow avert gaze
 - \Rightarrow 'long-meeting' effect
 - people listen while looking down at table (without changing head pose)
 - bored people

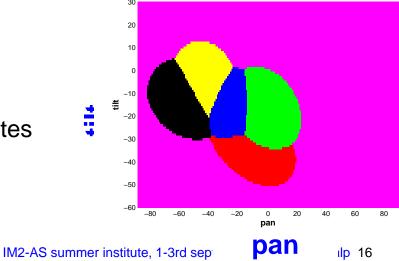


Independent VFOA recognition

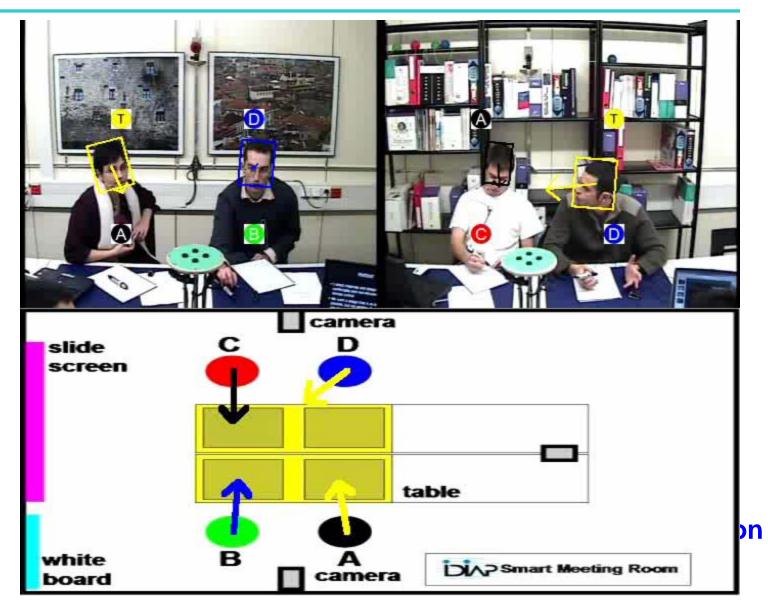
- Input: head pose of one person
- Ouput: recognized VFOA for this person

FOA modeling using HMM



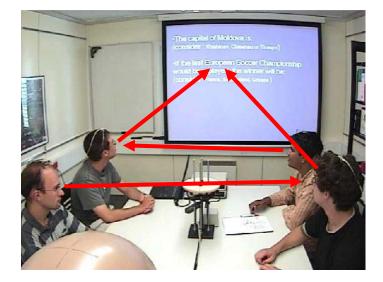

- observation likelihood $p(h_t | f_t)$
 - Gaussian distribution for regular label

$$p(h_t|f_t = i) = \mathcal{N}(h_t|\mu_i, \Sigma_i)$$


uniform distribution for unfocused label

- dynamic model $p(f_t | f_{t-1})$
 - transition between the different VFOA states
 - set to favor smooth VFOA sequences
 - no other prior

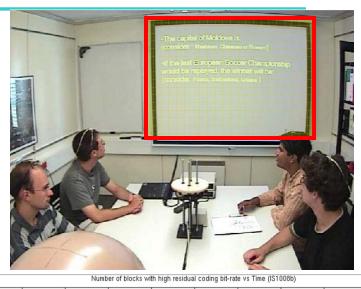
illustration

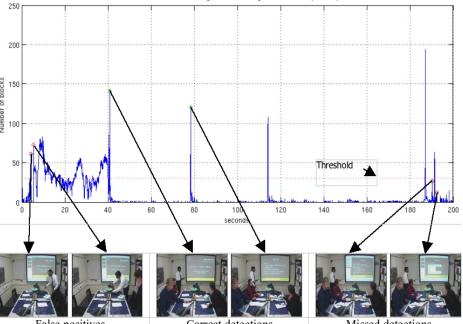

Ambiguities

 \Rightarrow modeling people interactions and context should help

Multi-party VFOA recognition using contextual cues

- **task:** recognize the VFOA of all participants
- social interaction provides context
 - we often share the same VFOA
 - when a person speaks, we tend to look at her/him
 - when a new slide is displayed, we tend to look at it

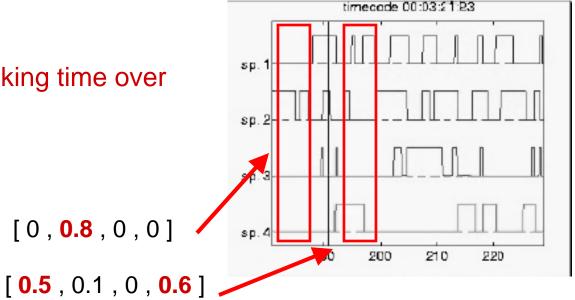

goal: integrate this knowledge into a principled model


- Cues: head pose and audio-visual contextual cues
- interaction models between gaze and speaking turn patterns (conversational event)
- influence of group activity (slide presentation)

Contextual cue **a**_t : slide activity modeling

- rely on automatic detection of slide changes
 - activity features extracted from central camera
 - thresholding => slide change instants
 - computation of variable at
 - "Elapsed time since the last slide change"

(Note: a slide change corresponds to any new material displayed on the slide are



False positives Correct detections Missed detections

Speaking activity

- Speaking activity of each person
 - thresholding signal energy of close talk microphone
 - **Cue:** proportion of speaking time over a temporal window

=> more robust than instantaneous measures of speech

Interaction modeling : conversational events

Characterization of the communication flow
 => introduction of new (hidden) variables e_t

Conversational events

- mainly defined from speech cue
- all possible combinations of speaking/silence per participant => 16 events
 - event type:
 - silence
 - monologue
 - dialogue
 - discussion (3 or 4 people)
 - who is involved
- also relate to VFOA activity

e.g. monologue by person D

Multi-party Dynamic Bayesian Network Model

- hidden states:
 - joint focus of all participants

 $f_t = (f_t^1, f_t^2, f_t^3, f_t^4)$

- conversational events e_t
- observations
 - head pose o, pan/tilt angle for all people
 - slide activity at elapsed time since last-slide change
 - speaking activity proportion of speaking time, for all people
- assumption
 - conversational event controls
 - speaking activity
 - dynamics of gaze
 - this control is modulated by the slide activity
 - => conversation activity, esp. gaze, varies with group activity

Speaking activity likelihood

- assumption
 - people speaking activity independent given the conversational event

$$p(\tilde{s}_t|e_t = E_j) = \prod_{k=1}^4 B_j(\tilde{s}_t^k|\eta_{j,k}, T)$$

 individual speaking distribution: Beta distribution characterized by ideal speaking proportions

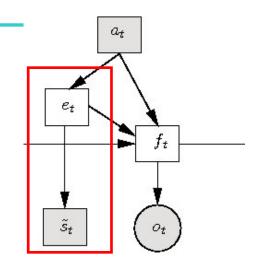
e.g. event: monologue of person 2

 $\eta_j = [0.05, 0.9, 0.05, 0.05]$

- high likelihood if observations near ideal values
 - e.g. window 1 [0, **0.8**, 0, 0]
 - e.g. window 2 [0.5, 0.1, 0, 0.6] M2-AS summer institute, 1-3rd september 2008, Riederalp 24

ŵ

200

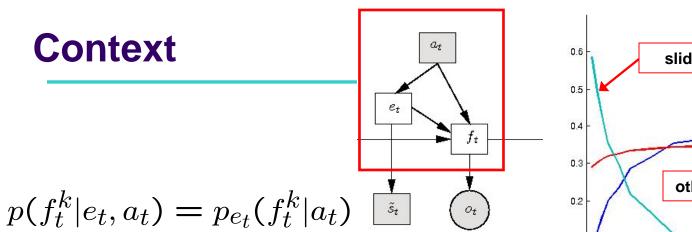

210

220

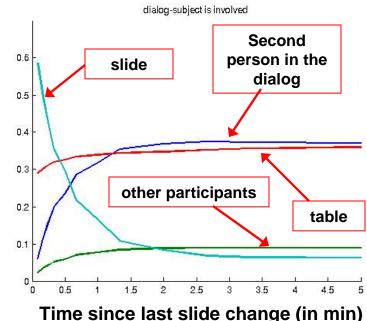
sp.

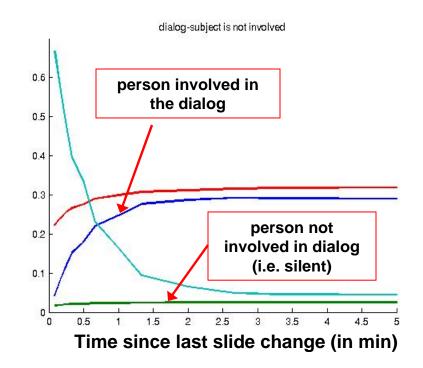
sp. J

sp.4

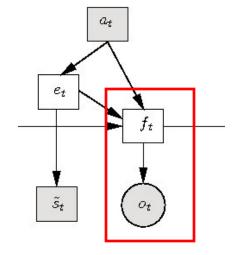

timecode 00:03:21:23

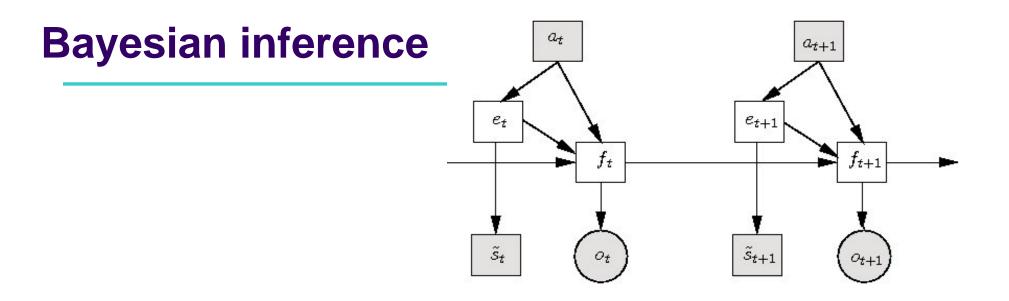
context


- intuition: a new slide?
 - people turn their attention to it
 - after some time, attention shifts back to the discussion
- intuition: person 1 makes a monologue ?
 - people look at him
 - exceptions
 - long monologues (audience looks at table)
 - person talks while a slide is displayed (audience looks at slide)
 - Interaction between slide context and conversation activity needs to be taken into account



- joint influence of slide and conversational event on focus
- e.g. dialog
 learn prior probability of focus
 - person involved in the dialog
 - looks at slide when new slide displayed
 - after, looks mainly at dialog partner
 - looking at table important
 - person not involved
 - same focus behaviour w.r.t slide/table
 - looks almost exclusively at people involved in the dialog, not at the 4th participant

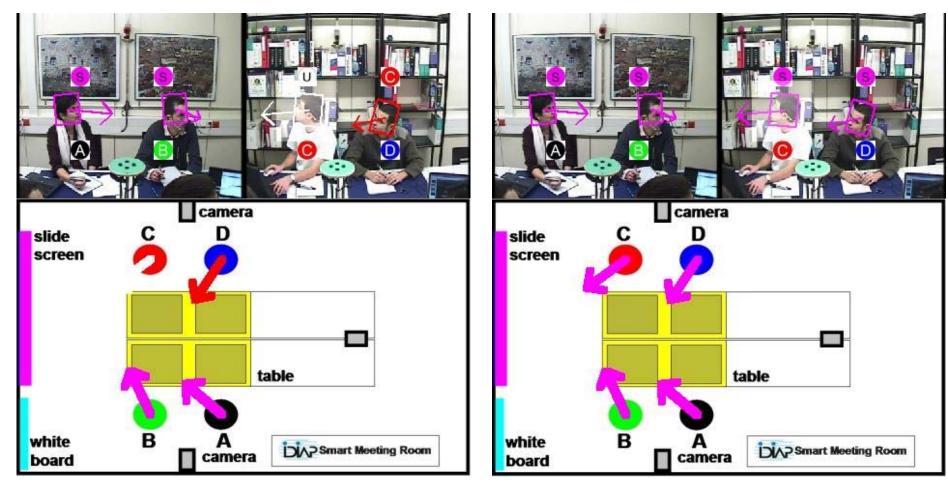



Head pose – VFOA relationship

- Assumption
 - head observations independent given VFOA of all participants

$$p(o_t|f_t) = \prod_{k=1}^4 p(o_t^k|f_t^k)$$

• Same Gaussian model as with independent case



Maximization of joint posterior distribution of hidden variables given observations

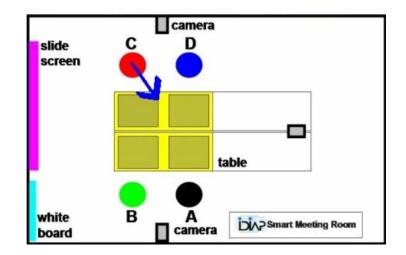
$$p(e_{1:T}, f_{1:T}, \lambda | \tilde{s}_{1:T}, o_{1:T}, a_{1:T})$$

- Inference more complex than with normal HMM
 - several interdependent hidden variables
 - however, we can exploit hierarchical structure

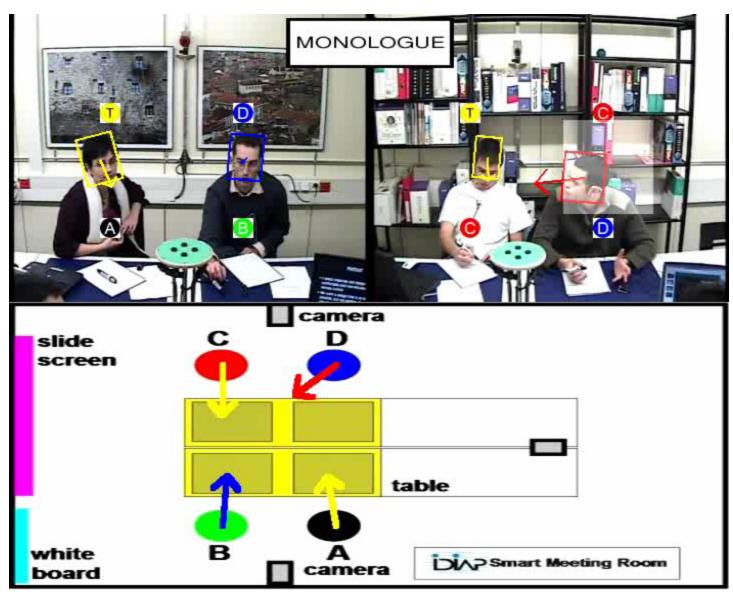
illustration: group and slide activity

independent recognition (head pose only)

multi-party recognition using contextual cues


IM2-AS summer institute, 1-3rd september 2008, Riederalp 29

Results


• performance measure : percentage of correctly recognized VFOA

position	A	В	С	D	mean
Baseline, independent	39.5	50.5	52.5	27.3	42.4
Multi-party, cognitive, slide context	45.6	51.4	50.7	39.8	46.9
Multi-party, cognitive, conversational event context	51.5	54.0	50.5	43.2	49.9
Multi-party, cognitive, full context	51.0	54.1	57.2	47.0	52.2

- baseline: 42% => challenging problem
- seats A and D: more VFOA ambiguities
- multi party
 - context helps:
 - slide context: + 4.5%
 - conversational context: + 7.5%
 - **full context**: + 10% absolute improvement
 - higher improvement on seats with larger ambiguities IM2-AS summer institute, 1-3rd september 2008, Riederalp 30

Demonstration video: full context

Conclusion

head-pose tracking

- difficult given image resolution
- around 10-12 degree average error in pan, depending on people appearance

• VFOA recognition

- independent recognition from head pose (baseline)
- multi-party VFOA using contextual cues
 - Gaze/speech interaction modeling through conversational events
 - Accounting fro group activity (presentations)

• future work – how to improve recognition ?

- Improve head pose estimation
 - previous study (independent recognition case)
 - => importance decrease when using estimated head pose rather than GT pose
- use other contextual cues (e.g. table activity)
- model timing information (people tend to look more at speaker at beginning and end of speaker turn)

Thank you for attention

Questions ?

IM2-AS summer institute, 1-3rd september 2008, Riederalp 33