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Motivation and applications

°* More an more data generated (appliances, cell phones, web...)
° Finding activity patterns, with main goals:
— discover, explain, analyse (user, activities, relationships)
—recommend, summarize

* Surveillance areas
° Activity analysis is important
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* Millions of cameras recording data passively
everyday
=> used mainly for future references

* Activity analysis useful for event detection
and automatic behavior analysis

* abnormal situation detection
* alarm/stream selection in control rooms

° activity models & statistics
infrastructure planning and management

Collective behaviors building
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e Goal: automatic activity patterns discovery
e extract temporal order of sub-events within the discovered activities
e detect when activities occur
e Defines normal activity => deviation = abnormality

e |[ssue
e activities occur concurrently, with/without synchronization
e apply to many cameras, low quality, weak activity structure
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Outline

* Activity approach
* General principles
* Extensions

* Results and evaluation

* Conclusion and perspectives
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Overall approach

Low-Level Features

° object centric features trajectories —
difficult in crowded scenarios

* allows use of compressed domain
features

* Unsupervised Methods

° labeling data is time consuming &
error prone

* Topic Models

* efficient to mine dominant patterns
through co-occurrence analysis
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Video

Frames

Temporal

Document:
n(w, ta, d)
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Temporal Motifs
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* Video

* Optical flow

* Quantization
* 8 directions + very low motion
* Spatial blocks

* Low-level documents

* Low-level words: (position,motion)
° Vocabulary size: 10k to 100k
* Bag-of-words over 1 second window
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* Input document (vocabulary size: 10k-100k)

* PLSA topic model

* Decomposes document into mixture of topics
* Soft clustering of data
° Co-occurrence analysis

* Qutput
* Topics (groups of low-level words)
* Between 25-100 topics

* Low-level topics => high-level words
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topic examples =

* Note: topic distributions over (position,motion) words
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* Low-level
* Optical flow, quantization
* PLSA : low-level topics -

Temporal Document

* At each time instant (1 second)

* Low-level topic presence = amount of high-level word
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Temporal Document: n(w, ta, d)
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Generative Process
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Moti?s Occurences: 2=2
(z.ts | d) Temporal Motifs:
Z,LS
PiZ, p(w,tr | z)
Probabilistic Latent Sequential Motifs: Discovering temporal activity patterns in video scenes, 2
Varadarajan, Emonet, Odobez, BMVC, 2010 14 @& @@
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Learning Motifs

Using an EM Algorithm

z=2

| Training: \
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Motifs Otccllzlr en ces Temporal Motifs:
p(z,ts|d) p(w.tr | )

Probabilistic Latent Sequential Motifs: Discovering temporal activity patterns in video scenes,
Varadarajan, Emonet, Odobez, BMVC, 2010
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Low Level Processing
optical flow, quantization, dimensionality reduction
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Temporal Modeling
motifs mining, occurrence finding
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Temporal

Document:

n(w, ta, d)
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Temporal Motifs

and When they occur

+ Extensions

Probabilistic Latent Sequential Motifs: Discovering temporal activity patterns in video scenes,

Varadarajan, Emonet, Odobez, BMVC, 2010
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* Learning issue: no constraints on distributions to be learnt
° multinomial distributions => probability tables => many non-zero entries
° in practice, one expect multinomials to be peaky/sparse
e.g. topic starting times

* Approach L.(D|©) = L(D|O)

* Sparsity constraint on p(ts|z, d)
— peaky or sparse distributions => small entropy
— indirectly achieved
=> maximize Kullback-Leibler divergence with uniform distribution U

* Lead to simple modification of the EM algorithm

A Sparsity Constraint for Topic Models - Application to Temporal Activity Mining,
Varadarajan, Emonet, Odobez, NIPS workshop on Sparse Modeling, 2010 17 jva




Experiments : synthetic data

* Document generation
* 5 topics with 6 to 10 time steps

Il Sl

* Random generation of 10 documents e.g.
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True topics

Recovered topics
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constraint
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True topics
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* Limitations:
* Parameter setting (number of topics, max of temporal extent)
° No constraints on maotif distributions to be learnt

e Solution: exploit Dirichlet Processe

Extracting and Locating Temporal Motifs in Video Scenes Using a Hierarchical Non
Parametric Bayesian Model, Emonet, Varadarajan, Odobez, CVPR 2011
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Compact form Expanded form

* Non-parametric approach to model arbitrary distributions over data points

* Defines a prior distribution over density distributions using infinite
mixture models — e.g. Infinite Gaussian Mixture Models

°* Two main ‘parameters’

* Base probability distribution G°
* Concentration parameter a° (controls the mixture weights)
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Dirichlet process
(one per doc)
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1 temporal document - Nd(doc. j)

* Note: hierarchy introduced (motifs shared across occurrences)
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1 temporal document -

* Note: hierarchy introduced (motifs shared across occurrences)
* Solved with collapsed Gibbs sampling
*  Complexity proportional to amount of data
* QOccurrences: inherently sparse (compared to probability tables p(ts,z|d))

X _
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Results and evaluation

* Experiments with synthetic documents
* Controlled setting, free ground truth
* Test model behavior, draw curves

* Different datasets
* Traffic: MIT, UQM, ETHZ, our data

° VANAHEIM data

— Loosely constrained behavior
— Robust tracking impossible
— Multi-camera handling

* Audio data set

* Quantitative evaluation
* Event precision recall
* Prediction tasks
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An’image at each time step
(each column of the matrix)

—

Matrix - '7
diapen Color-coded dynamics 2¢ sw
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Top 6 topics, explaining more than 95% of the data
(looking for 12s max activities)
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Example 2 — Traffic Junction (UQM

* Top 6 recovered topics, looking for 12s duration
* |ot of traffic => lot of co-occurring motion => topic cover more area

* different traffic phases identifiable
Copyright © 2009 Idiap — www.idiap.ch




Examples 2 - Traffic junction UQM
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* Recovering 90s topics => automatically recovers only one motif
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Example 3 - Metro

Montage 1 Montage 2
(almost no overlap) (with overlap)

N/

For each montage,
we compose a video from two cameras
and apply exactly the same approach.
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Example 3 - Metro

Montage 1
(almost no overlap)

#044
p(z) = 0.0040
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Montage 2
(with overlap)

* Low-level topics:
Approach does automatic
soft-calibration
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Leaving Station Entering Station Vending Machine

(from the right) (leaving)

Just Crossing Entering Station ReachingEscaIator '7
(left to right)» (from the left) and Elevator 2 &




a Considered measures (at each time instant)

-~ (log)likelihood
~ normalized (log)likelihood
~ reconstruction error

» Reconstruction error

n(w, ta, d
abnorm(ta,d) = Z ( n/(a’; ) _ p(w, tald)

each T
time instant each

document

Reconstructed probability

sum over the (from model fitting)

vocabulary  “Empirical Probability”
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Mining audio data

Vehicle

Vehicle

2 microphones %9//

25cm

, - e RUIN e
Word . . )
(TDOA |
quantization) e e o o -
time

Sample document n(w,ta)

* TDOA features can be used as words
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Resultinc mo\tifs

* Automatically recovers 4 motifs
* 30 time steps
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* 60 time steps

| -

—

e

R

— Similar shapes
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* Temporal motif discovery model

* Topic with explicit word temporal order, not only co-occurrence
* Handles concurrent activities

* Generic method: can be applid to any (word x time) count matrix
* Fully automatic: from videos to (numer of) activities and abnormality

* Current work and Perspective
* Apply model to Audio (marray)-Video => enhanced Scene model

* Currently, no temporal modeling of activitiy starting times p(ts,z|d)

o~

— limitation, e.g. when dependencies exists e
A is followed by either B or C L
=> pairwise analyses, or symbolic analysis

— when scene goes through specific phases
some activities are more likely to occur
=> HDP-HMM approach

y, -
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Perspectives

* Stream selection task (EU Vanaheim)
* Unsupervised and supervised approaches (using little operator feedback)

° Human activity recognition
* DGA french funding
* Use of Spatio-Temporal-Interest points (STIP)
as descriptor for words
* Motifs define super-word features

* Urban scene semantic labeling (Thales funding)
° Automatic scene segmentation + semantic labels
* Use dynamics features (learned activities)
+ visual features and object detection responses
*  Apply known semantic rules into structured scenes
for abnormal event detection
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Thank you for your attention.

Questions ?
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